MARS status report for 2014-2015

B.T. Roeder, A. Saastamoinen, and A. Spiridon

This year we produced and separated several radioactive beams for the physics program at the Cyclotron Institute at Texas A&M University with the Momentum Achromat Recoil Separator (MARS) [1]. Some of the beams in this report were developed during previous years [2]. A new, low energy ¹⁶N beam was also developed (see below in section IV).

I. Production of radioactive beams for superallowed β-decay measurements

During 2014-2015, we tuned several radioactive beams with MARS for the group of Prof. J.C. Hardy with the (p, 2n) fusion-evaporation reaction. Nearly pure beams of ³⁰S, ²⁶Si, and ³⁴Ar were produced. These beams were needed as part of Prof. Hardy's research group's continuing studies of the lifetime and branching ratios for superallowed β -decays.

The ³⁰S beam was produced with the $p(^{31}P,^{30}S)2n$ reaction. A primary beam of $^{31}P^{10+}$ at 30 MeV/u from the K500 cyclotron bombarded the MARS gas cell target to produce the ³⁰S. The target was filled with 2 atm of H₂ gas cooled to 77K. After optimizing the tune of MARS, we obtained 90 eV/nC, or about 18,000 particles/sec of ³⁰S at the end of MARS with the full primary beam intensity. The total impurity rate was about 1.3%, with the main contribution coming from ²⁷Si at about 0.4%.

The ²⁶Si beam was produced with the $p(^{27}Al,^{26}Si)2n$ reaction. A primary beam of ²⁷Al⁸⁺ at 30 MeV/u from the K500 cyclotron bombarded the MARS gas cell target to produce the ²⁶Si. The target was filled with 2 atm. of H₂ gas cooled to 77K. After optimizing the tune of MARS, we obtained 240 eV/nC, or about 22,000 particles/sec of ²⁶Si at the end of MARS with the full primary beam intensity. The total impurity rate was about 1.6%, with the main contribution coming from ²³Mg at about 0.8%.

The ³⁴Ar beam was produced with the $p({}^{35}Cl, {}^{34}Ar)2n$ reaction. A primary beam of ${}^{35}Cl$ at 30 MeV/u from the K500 cyclotron bombarded the MARS gas cell target to produce the ${}^{34}Ar$. The target was filled with 2 atm of H₂ gas cooled to 77K. After optimizing the tune of MARS, we obtained 51 eV/nC, or about 20,400 particles/sec of ${}^{34}Ar$ at the end of MARS with the full primary beam intensity. The total impurity rate was about 1.1%, with the main contribution coming from ${}^{31}S$ at about 0.2%.

II. ³⁵K secondary beam

In March 2014, we produced and separated 35 K with MARS [2]. Following this successful test run, the 35 K β -delayed proton decay experiment was conducted in June 2014. Details of the measurement are given in a separate report [3]. For this measurement, the 35 K was produced with the fusion-evaporation reaction (p,2n) in inverse kinematics with 36 Ar primary beam at 36 MeV/u. Hydrogen gas at a pressure of 2 atm and at a temperature of 77K was used in the MARS gas cell target.

In the experiment, the ³⁵K secondary beam was slowed down and implanted into a thin silicon strip detector that is only ~45 μ m thick. Thus, the ³⁵K secondary beam must have a small momentum spread such that all the nuclei produced are implanted into the detector. For the ³⁵K production test, we set

the MARS momentum slits (the "coffin slits") to ± 0.5 cm, which corresponds to a momentum spread of the secondary beam of $\Delta P/P \approx \pm 0.3\%$. With this momentum slit setting, we produced ³⁵K at a rate of about 3.0 events/nC. This gave a rate of about 450 particles/sec for the ³⁵K (using 150 nA of ³⁶Ar primary beam) with about 40% impurities. The largest impurity contribution came from ³²Cl, but this did not significantly affect the experiment. The ΔE vs. Y-position spectrum on the MARS target detector showing the resulting secondary beam for the ³⁵K is shown in Fig. 1.

FIG. 1. Results of the ³⁵K MARS tuning for the June 2014 experiment.

III. ⁹C secondary beam

Also in March 2014, we produced and separated ⁹C with MARS [2]. ⁹C was needed by the group of Prof. G. Rogachev for their experiment with resonant elastic proton scattering using the Thick Target Inverse Kinematics (TTIK) method. The ⁹C secondary beam was employed to study the unbound ¹⁰N nucleus. The experiment was conducted in October 2014.

For the ${}^{9}C$ experiment, a ${}^{10}B$ primary beam at 31 MeV/u bombarded the MARS gas cell target. The gas cell target was filled with 3 atm of hydrogen gas at a temperature of 77K. The ${}^{9}C$ was produced with the fusion-evaporation reaction (p,2n) in inverse kinematics. The Q-value for the p(${}^{10}B,{}^{9}C$)2n reaction is -25.7 MeV. Thus, 31 MeV/u was chosen for the primary beam energy as a compromise

between the production rate for ${}^{9}C$, which is better at higher primary beam energies, and the desire to have the ${}^{9}C$ at the lowest possible energy. For the experiment, the ${}^{9}C$ energy was reduced to $\sim 11 \text{ MeV/u}$ with degraders and a thick scintillator foil at the entrance of their scattering chamber.

The optimized production rate for the ${}^{9}C$ secondary beam was about 7.0 events/nC with the 3 atm of gas in the target, which gave ~about 1.4 x 10³ particles/sec with 200 nA of ${}^{10}B$ beam on target. The ${}^{9}C$ secondary beam was relatively pure, although there was some contamination in the beam from α -particles and ${}^{3}He$. Some of this contamination from the α -particles was removed in the experiment by closing the slits of MARS. The resulting ${}^{9}C$ secondary beam as measured by the MARS target detector is shown in Fig. 2.

FIG. 2. Result of the ${}^{9}C$ production with MARS. The main contaminant of the secondary beam is from ${}^{3}He$.

IV. Production of ¹⁶N secondary beam

¹⁶N secondary beam was produced with MARS at low energy in preparation for upcoming experiments to study the pionic fusion reaction mechanism with Prof. Yennello's group.

In the test, a ${}^{15}N^{2+}$ primary beam at 7 MeV/u from the K500 cyclotron bombarded the MARS gas cell target. The gas cell was filled with ${}^{2}H_{2}$ (deuterium) gas at a pressure of 948 torr and a temperature of 77K. The reaction d(${}^{15}N, {}^{16}N$)p was used to produce the ${}^{16}N$. However, ${}^{16}O$ was also produced with high cross section at this energy from the d(${}^{15}N, {}^{16}O$)n reaction. It is possible for the ${}^{16}O$ ions to be produced in other charge states besides ${}^{16}O^{8+}$. Thus if ${}^{16}O^{7+}$ is produced, it is indistinguishable from ${}^{16}N^{7+}$ in MARS unless a thin silicon detector or degrader foil is employed to separate the two secondary beams by their different energy losses in the materials. Since a thin silicon detector was not available for the experiment, a thin Al degrader foil with areal density 4.4 mg/cm² was inserted in front of the MARS target detector. To optimize the production of ${}^{16}N^{7+}$ vs. ${}^{16}O^{7+}$, the MARS magnet settings were kept constant (D1-2 = 255.2 A, or $B\rho = 0.60$ T*m) while the gas cell pressure was varied from 1220 torr to 777 torr in steps of about 50 torr. We found the optimized ${}^{16}N^{7+}$ production with 948 torr, ${}^{16}O^{7+}$ at 832 torr, and some mixture of the two elements at the settings in-between.

Depending on the MARS quadrupole settings used, the production rate for ${}^{16}N^{7+}$ varied between 900 events/nC and 2200 events/nC. With ~100 nA of primary beam on target, this implies that production rates of greater than 10⁵ particles/sec are available for this beam at this energy. This relatively intense ${}^{16}N$ beam may be employed in future nuclear astrophysics experiments.

- [1] R.E. Tribble, R.H. Burch, and C.A. Gagliardi, Nucl. Instrum. Methods Phys. Res. A285, 441 (1989).
- [2] B.T. Roeder *et al.*, *Progress in Research*, Cyclotron Institute, Texas A&M University (2013-2014), p. I-48; http://cyclotron.tamu.edu/2014 Progress Report/index.html.
- [3] A. Saastamoinen *et al.*, *Progress in Research*, Cyclotron Institute, Texas A&M University (2014-2015), http://cyclotron.tamu.edu/2015 Progress Report/index.html.